***{MeKaN}*** wWw.mEkAnN.mUtLuFoRuM.OrG |
|
| İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! | |
| | Yazar | Mesaj |
---|
|mekann| ***(ÖZEL ÜYE)***
Mesaj Sayısı : 122 Nerden : %okuldan% (ENERJİ) : (REPP) : (PAYLAŞIM) : (TAKIMI) : (ADIM) : _DOLDUR_ (S.ADIM) : _DOLDUR_ (YAŞIM) : _DOLDUR_ (NERELİ) : _DOLDUR_ (KANKA\'LIK) : (SİTE GÜCÜ) : Rep Puanım : 100 Kayıt tarihi : 10/09/08
mEkAnN mEkAnN: 12
| Konu: İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! C.tesi Eyl. 13, 2008 5:04 pm | |
| İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! [b]RAM (Hafıza)
Hafızalar
Bilgisayarda çalışmakta olan bir programa ait komutlar ve veriler ile daha sonra kullanılacak olan sonuç işlemleri hafızalarda saklanır.
İşlemci ihtiyaç duyduğu komutu ilk önce L1 cache hafızada arar. Eğer işlemcinin aradığı komut burada yoksa L2 cache hafızaya bakılır. Eğer burada da yoksa sırayla, RAM ve HDD üzerindeki sanal hafıza üzerinde arar. L1 cache hafıza bunlar içerisinde en hızlı olanıdır ve genellikle işlemcinin üzerine imal edilir. L2 cache hafıza ise L1 e göre daha yavaş olmasına rağmen gene de hızı çok yüksektir. Bir kısım işlemcilerde (Celeronların ilk nesillerinde olduğu gibi) L2 cache hafıza bulmayabilmektedir. Bu durumda L1 cache hafızaya sığmayan komutlar L2 olmadığı için direkt olarak daha yavaş olan RAM a yazılmakta ve işlemcinin performansı düşmektedir. L2 cache hafıza genelde işlemcinin yakınındaki yüksek hızlı hafıza çiplerinden oluşur.
RAM Günümüz bilgisayarlarında hem okunabilen hem de yazılabilen RAM (Read Acces Memory – Rastgele Erişimli Hafıza)’ler kullanılır. RAM’ler birbirinden bağımsız hafıza hücrelerinden oluşur. Her hücrenin çift yönlü bir çıkışı vardır. Bu çıkış veri yoluna, veri yolu da işlemciye bağlanır ve işlemci ile RAM arasındaki bilgi alışverişi yapılır. Bu adresleme yöntemi ile RAM’deki herhangi bir hafıza hücresine istenildiği anda diğerlerinden bağımsız olarak ulaşılır. Rastgele erişim ifadesi buradan gelmektedir.
RAM’lerde bilgiye erişim hızı nanosaniyeler ile ifade edilir. Bu hız ortalama 50-60ns arasındadır. Fakat günümüzde kullanılan RAM’lerde bu hız 8ns ye kadar düşmüştür.
RAM’lerin kapasiteleri 16K’dan başlayıp 512MB’a kadar çıkmaktadır. Günümüz PC’lerinde ortalama 64MB RAM kullanılmaktadır.
DRAM (Dinamik RAM) DRAM daha çok kişisel bilgisayarlarda kullanılan bir hafıza türüdür.
DRAM’lerde verilerin saklanması için üzerinde enerji depolayan kondansatörler kullanılır. Fakat bu kondansatörler zamanla (çok kısa zamanda) üzerlerindeki enerjiyi kaybederler. Dolayısıyla enerji varken 1 durumunda olan hücre enerji boşalınca 0’a döner. Bu durumda bir transistörün açılıp kapanması suretiyle sürekli olarak bu enerjinin tazelenmesi gerekmektedir. Dinamik ifadesi buradan gelmektedir.
SRAM (Statik RAM) SRAM ’lerde DRAM’lerde olduğu gibi kondansatörler kullanılmaz. Bunun yerine her hücre için altı adete varan transistör kullanılır. Bu RAM’lerde bilgiler yüklendikten sonra sabit kalır. Sürekli enerji tazelemesi gerekmemektedir. Bu tip hafızalar daha pahalıdır. Bu yüzden kişisel bilgisayarlarda fazla tercih edilmemektedir.
EDRAM (Enhanced DRAM) Geliştirilmiş DRAM’ler L2 cache hafızada kullanılır. 35 ns. DRAM içerisine 256 bayt 15 ns. SRAM eklenmesi suretiyle oluşturulmuştur. EDRAM aynı zamanda SRAM bölgeleri, verileri, yavaş olan DRAM bloklarından toplayabildiklerinden hız kazanır. Veri istendiğinde yavaş olan DRAM 128 bitlik bütün bir bloğu hızlı olan SRAM’ gönderir.
EDO RAM Anakart ya da video kartında ana hafıza olarak kullanılan EDO RAM ile CPU-hafıza bant genişliği saniyede 100 MB’dan 200 MB’a çıkarılmıştır. EDO RAM’ler Pentium işlemcili anakartlarda kullanılmıştır. Pentium II’ler ile EDO RAM’ler yerini SDRAM’lere bırakmıştır.
SDRAM (Senkronize DRAM) İşlemcilerin hızlanması ile birlikte bu işlemcilerin maksimum seviyede işlem görebilmeleri için yüksek hızlı RAM’lere ihtiyaç duyulmuştur. SDRAM’le birlikte işlemci ve RAM birbirine aynı saat hızında kilitlenirler. Böylece işlemci ve RAM aynı saat hızında senkronize olarak çalışmaktadır.
Günümüzde kullanılmakta olan 66 MHz., 100 MHz, ve 133 MHz. SDRAM’ler vardır. Tercih edeceğiniz SDRAM tipi, işlemcinin kullandığı veri yolu saat hızı ile aynı olmalıdır. Yani 100 MHz. veri yolu kullanıyorsanız. PC 100 SDRAM kullanmanızda fayda vardır.
SGRAM (Senkronize Grafik RAM) Video adaptörleri ve grafik hızlandırıcılarda kullanılan bir tür DRAM türüdür.
SGRAM’de SDRAM gibi 100 MH’e kadar CPU saat hızına kendini senkronize edebilir. Bununla birlikte yoğun grafik işlemleri için bant genişliğini artırmak amacıyla gizli yazma ve blok yazma gibi bazı teknikleri kullanır.
RDRAM Kısaca RIMM olarak adlandırılan bu RAM, 100 MHz sınırını aşarak 400 MHz’e kadar hızlı bir performans sağlamaktadır. Bu RAM çeşidi i810E ve i820 chipsetlerle uyumlu olarak çalışmaktadır.
Bir Rambus DRAM, SDRAM’den çok daha yüksek bir performans sunar.
VRAM (Video RAM) Video adaptörlerinin kullandığı özel amaçlı hafızalardır. Klasik RAM’in aksine, VRAM iki farklı aygıta eş zamanlı olarak bağlanabilir. Bu durum bir monitörün ekran güncellemesi için VRAM’a erişirken bir grafik işlemcinin de aynı zamanda yeni veriler sunmasına imkan verir. VRAM’ler DRAM’lerden daha pahalıdır ve daha iyi grafik performansı verirler.
ECC (Error Correction Code) Bilindiği gibi bilgisayardaki bilgiler 1 ve 0’lardan oluşmaktadır. Bu değerler bazen ortam hataları, elektronik parazitler veya kötü bağlantılar gibi sebeplerden değişebilmektedir. Mesela 1 değeri 0’a dönüşebilir. Bu durum karşısında hatayı düzeltmek için ECC parite biti kullanılır.[/b] | |
| | | |mekann| ***(ÖZEL ÜYE)***
Mesaj Sayısı : 122 Nerden : %okuldan% (ENERJİ) : (REPP) : (PAYLAŞIM) : (TAKIMI) : (ADIM) : _DOLDUR_ (S.ADIM) : _DOLDUR_ (YAŞIM) : _DOLDUR_ (NERELİ) : _DOLDUR_ (KANKA\'LIK) : (SİTE GÜCÜ) : Rep Puanım : 100 Kayıt tarihi : 10/09/08
mEkAnN mEkAnN: 12
| Konu: Geri: İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! C.tesi Eyl. 13, 2008 5:05 pm | |
| [b]İşlemci (CPU)
Genel Yapı Bir bilgisayarın en popüler ve en önemli parçası işlemcidir. Kısaca CPU (Central Processing Unit / Merkezi İşlem Birimi) olarak anılan işlemciler, adından da anlaşılacağı üzere bir bilgisayardaki işlemleri yürüten ve sonuçları gerekli yerlere gönderen elemandır.
1971 yılında Intel firmasının ilk defa binlerce transistörü bir silikon çip üzerinde birleştirmesinle bilgisayar çağında devrim gerçekleştirilmiş oldu. Bu şekilde daha önce sadece büyük şirketlerin ve üniversitelerin kullanabildiği bilgisayarlar iyice küçüldü ve evlere girmeye başladı.
Mikroişlemci ler, açma kapama anahtarı gibi çalışan milyonlarca transistörden oluşmaktadır. Bu anahtarların programlanma durumuna göre elektrik sinyalleri bunların üzerinden akar. Bu sinyaller, bilgisayarın yaptığı tüm işleri toplama, çıkarma, çarpma ve bölme gibi temel matematiksel işlemlere indirir. İşlemci de bu işlemleri en basit sayma sistemi olan ikilik düzen yani sadece 0 ve 1 sayılarını kullanarak yapar.
Mikroişlemciler her türlü işi ikilik sayma sistemine dökmüştür. Mesela “Y” harfi ikilik sistemde “1011001” ile ifade edilebildiği gibi kırmızı gibi bir renk de bunun gibi ikilik tabandaki üç ayrı sayı grubu ile ifade edilir. Aynı şekilde bir ses veya görüntü kaydı da yine buna benzer ikilik sayı grupları ile ifade edilirler.
Bu sayı grupları üzerinde işlem yapmak için işlemci içerisinde bir takım komut listesinden ibaret bir program mevcuttur. Bu komutlar işlemciye iki sayının çıkarılması, toplanması yönünde emir verebildiği gibi klavyeden girilen tercihlere göre bir takım komut satırını atlayıp (şartlı dallanma - conditional branch) diğer komut satırlarını icra etmeye devam edebilir. Yani klavyeden bir soru karşısında gireceğimiz “E” (evet) veya “H” (hayır) ifadelerine göre program belirli komut satırlarını icra eder veya etmez. Temel olarak, mikroişlemcinin yaptığı iş, bitler üzerinde işlem yapmak üzere komutları çalıştırmaktır.
Üniteler İşlemci üzerinde komutları icra etme işini uygulama ünite si (execution unit) ya da fonksiyon ünitesi (function unit) adı verilen üniteler gerçekleştirir. Modern işlemcilerde değişik komut türlerini işletmek üzere birden fazla fonksiyon ünitesi bulunur. Çoğunlukla aritmetik/mantıksal ünite (arithmetic/logic unit) olarak da anılan tamsayı (integer) üniteleri tam sayılar ile ilgili işlemleri yapar. Kayan nokta ünitesi (FPU-Floating Point Unit) ise 5,21 gibi küsuratlı sayılarla ilgili işlemleri yapar. Bir mikroişlemcide ne kadar fazla fonksiyon ünitesi varsa aynı anda çalışabilecek komut sayısı da o kadar artar.
Register seti Register ler, işlem anında bir program tarafından kullanılmakta olan sayıların saklandığı geçici hafıza hücreleridir. Farklı komut ve register setlerine sahip olan işlemciler birbirlerinin yazılımlarını çalıştıramazlar.
Mimari Mikroişlemciler mimari (architecture) olarak gruplara ayrılırlar. Ortak mimariye sahip olan işlemciler aynı komutları tanımakta ve aynı yazılımları çalıştırabilmektedirler.
En meşhur mikroişlemci mimari si Intel’in x86 işlemcisidir. Intel ilk x86 tabanlı işlemcisini 8086 olarak 1978 yılında piyasaya sürdü. Daha sonraki yıllarda yeni nesil x86 tabanlı işlemciler çıkarıldı. 286,386,486, Pentium ve Pentium Pro olarak bu kuşakları görebilmekteyiz. Pentium II, Celeron, Pentium III, Xeon ve Katmai, altıncı kuşak Pentium Pro’nun varyasyonlarıdır.
Intel’in haricindeki diğer mimariler ise şunlardır: Modern Machintosh’larda bulunan PowerPC, eski Mac’lerdeki 68oxo serisi, Digital ve Compaq’ın güçlü serverlerinde kullanılan Alpha ailesi, Silicon Grahics’in Mips Rxooo serisi, Hawlett-Packard’ın PARISC’i ve Sun Microsystems’e ait SPARC’tır.
Mimariler, ortaya çıktıkları dönemin felsefesine göre dizayn edilirler. 1970’lerde veri saklama cihazları ve hafıza bu güne göre çok kısıtlıydı. Bu kaynakları tasarruflu bir şekilde kullanabilmek için Intel x86 tabanlı işlemcilerde CISC (Complex Instruction Set Computing - Karmaşık komut seti ile hesaplama) diye bilinen bir mimari kullandı. CISC’ın karakteristik iki özelliği, değişken uzunluktaki komutlar ve karmaşık komutlardır. Değişken uzunluktaki komutlar hafıza tasarrufu sağlar. Çünkü basit komutlar karmaşık komutlardan daha kısadır. Karmaşık komutlar da iki ya da daha fazla komutu tek bir komut haline getirdikleri için hem hafızadan hem de programda yer alması gereken komut sayısından tasarruf sağlar.
İlerleyen yıllarda CISC’in kısıtlamaları ve hafızayı tasarruflu kullanmanın önemini yitirmesi neticesinde CISC’a rakip olarak RISC (Reduced Instruction Set Computing - daraltılmış komut seti ile hesaplama) ortaya çıktı.
RISC’ın komutlarının uzunluğu sabittir (genelde de 32 bit’tir) ve her bir komut basit bir işlemi yerine getirir. Bir RISC çipi bu iki karakteristik özelliği sayesinde, fetch (komutu hafızadan taşıma), decode (komutun anlamını çözme) ve komutu çalıştırma işlemlerini daha kolay bir şekilde yapabilir. RISC’ın bir dezavantajı kodun uzamasıdır. Tüm komutlar gerek olsun olmasın 32 bitliktir. Dolayısıyla RISC programları CISC programlarından daha fazla hafıza gerektirebilirler. Buna rağmen decode aşamasının CISC’e göre daha hızlı gerçekleşmesine ek olarak, çoğu RISC komutları sabit bir zaman diliminde işlem görür. Bu da superscalar pipelining teknolojisi kullanan modern işlemciler için önemli bir özelliktir.
Pipelining Pipelining , tıpkı bir fabrikadaki seri üretim bandı gibi çalışır. Bir fonksiyon ünitesi, her komutun işletilmesini aşamalarına ayırır. Basit bir pipeline’de beş ya da altı aşama olabilir. Bir superpipeline’da ise 10 ya da daha fazla aşama olabilir. Böyle bir pipeline’dan aynı anda birkaç komut birden akabilir. Her komut da ayrı bir aşamada işlem görmekte olabilir. Superscalar bir işlemcide her birisinin kendisine ait pipeline’ı olan iki ya da daha fazla fonksiyon ünitesi yer alabilir. Böyle bir işlemci birkaç komutu birden paralel olarak işletebilir.
RISC bu tekniğe daha da elverişlidir. Çünkü basitleştirilmiş komutlar pipeline’lardan daha pürüzsüz bir şekilde akarlar ve CISC komutlarının neden olabildiği tıkanmalara maruz kalmazlar.
Cache Cache , çalışmakta olan bir programa ait komutların geçici olarak saklandığı bir hafızadır. Cache hafızalar, işlemcinin komutları daha hızlı yüklemesini sağlayan yüksek hızlı hafızalardır. Cache hafızlar, Level 1 (L1) ve Level 2 (L2) olmak üzere ikiye ayrılırlar. İşlemci ihtiyaç duyduğu komutu ilk önce L1 cache hafızada arar. Eğer işlemcinin aradığı komut burada yoksa L2 cache hafızaya bakılır. Eğer burada da yoksa (cache miss durumu) sırayla, RAM ve HDD üzerindeki sanal hafıza üzerinde arar. L1 cache hafıza bunlar içerisinde en hızlı olanıdır ve genellikle işlemcinin üzerine imal edilir. L2 cache hafıza ise L1 e göre daha yavaş olmasına rağmen gene de hızı çok yüksektir. Bir kısım işlemcilerde (Celeronların ilk nesillerinde olduğu gibi) L2 cache hafıza bulmayabilmektedir. Bu durumda L1 cache hafızaya sığmayan komutlar L2 olmadığı için direkt olarak daha yavaş olan RAM a yazılmakta ve işlemcinin performansı düşmektedir. L2 cache hafıza genelde işlemcinin yakınındaki yüksek hızlı hafıza çiplerinden oluşur. Bazı yeni işlemcilerde (Celeron 300A ve sonrası gibi) L2 cache hafıza işlemcinin içine monte edilmiş ve daha hızlı erişim sağlanmıştır.
Dünden bugüne x86 işlemciler 8086/8088 Intel, 16 bitlik 8086 işlemcisini 1978 yılında piyasaya sürdü. Yüksek seviyeli programlama dillerine ve daha etkin işletim sistemlerine sahip ilk işlemci olan 8086, IBM uyumlu sistemlerin temelini oluşturdu. Arkasından çıkan 8088 işlemci ile IBM ilk kişisel bilgisayarı (PC) piyasaya sürdü. Bu ilk PC’nin 16K hafizası, grafik özelliği olmayan ekranı ve bir teyp bandı sürücüsü vardı.
Bu ilk işlemci dış veriyolu olarak 8 biti destekliyordu ve 4.77 MHz saat hızında çalışmaktaydı.
80286 Kısa bir süre sonra Intel, 80286 işlemcisini çıkartarak PC performansını yeni bir seviyeye yükseltti. 80286 işlemci 16 bit veriyolunu hem içte hem de dışta kullanabiliyordu. Bu da kendinden önceki işlemcilerden çok daha fazla ilgi görmesine sebep oldu ve artık PC’ler için daha güçlü yazılımlar üretilmeye başlandı.
80386 Intel’in bir kuşak sonraki işlemcisi olan 80386 işlemcisi PC dünyasına büyük değişiklikler getirdi. SX ve DX modelleri olan bu işlemcinin en büyük özelliği 32 bit bir işlemci olmasıydı. 286’lardaki veri yolunun iki katına çıkartılması PC’lerde grafik işlemlerini artırdı. Ayrıca saat hızının 16 MHz’den 33 ve 40 MHz’e çıkartılması işlemleri daha da hızlandırdı.
i486 Intel Nisan 1989 yılında i486 işlemciyi piyasaya sürdü. i486 işlemcisi entegre bir chiptir. Bu chip dört farklı işlev grubunu (asıl CPU’yu, bir matematik yardımcı işlemcisini, bir önbellek denetleyicisini ve DX/DX2 modellerinde bir adet genel önbellek, DX4 modellerinde ise iki adet ayrık 8K önbelleği) bir bileşende birleştirmektedir. i486 hem içten hem de dıştan 32-bit yapı kullanır. Saat hızı olarak da 100 MHz’e ulaşmıştır.
Pentium i486 işlemcilerin hızla yaygınlaştığı bir dönemde Intel P5 kod adıyla tasarladığı yeni işlemci ailesini Pentium adıyla piyasaya sürdü. Dış veriyolu 64-bit iç veriyolu ise 256-bit olan bu işlemci iki adet ayrık 8K’lık önbelleğe sahiptir. Pentium işlemci 486’lardan farklı olarak iki adet tamsayı işlemcisine sahiptir. Kayan nokta işlemcisi de iyice geliştirilmiştir. Ayrıca 486 işlemcilerde olmayan Branch Protection (dallanma tahmini) teknolojisi kullanılmıştır. Bu teknoloji, program sırasında işletilecek olan dallanma (jump) komutlarının dallanacağı tahmin edilen kod kümelerinin daha hızlı erişilen bir ortama kopyalayarak işlenmeye başlanmasına dayanır. Bu şekilde %25 oranında performans artışı sağlanır.
Pentium işlemciler 0.28 mikronluk BICMOS ve CMOS teknolojisi ile üretilmişlerdir. 60 MHz, 75 MHz, 90 MHz, 100 MHz, 120 MHz, 133 MHz, 166 MHz, 200 MHz ve 233 MHz saat hızında üretilmişlerdir. | |
| | | |mekann| ***(ÖZEL ÜYE)***
Mesaj Sayısı : 122 Nerden : %okuldan% (ENERJİ) : (REPP) : (PAYLAŞIM) : (TAKIMI) : (ADIM) : _DOLDUR_ (S.ADIM) : _DOLDUR_ (YAŞIM) : _DOLDUR_ (NERELİ) : _DOLDUR_ (KANKA\'LIK) : (SİTE GÜCÜ) : Rep Puanım : 100 Kayıt tarihi : 10/09/08
mEkAnN mEkAnN: 12
| Konu: Geri: İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! C.tesi Eyl. 13, 2008 5:05 pm | |
| Anakart (Mainboard)
Anakart, bir bilgisayarin tüm parçalarini üzerinde barindiran ve bu parçalar arasindaki iletisimi saglayan elektronik devredir.
Bir anakartin üzerinde islemci, ram, ses karti, ekran karti, modem, ethernet, tv karti, radyo karti ve scsi karti vb.. girebilecegi yuvalar, klavye, sabit disk, flopy disk ve seri - paralel port denetçileri, ve bunlarin koordinasyonunu saglayan chipset'ler bulunur.
Anakartin üzerinde genisleme kartlarinin takilabilecegi yuvalara slot adi verilir. Bu slotlar, VESA, EISA, ISA, PCI ve AGP olmak üzere çesitli bölümlere ayrilir. Bunlardan su anda en çok kullanilanlari ISA, PCI ve AGP dir. VESA slotlar eski 486 islemcili anakartlarda kullanilmaktaydi. Pentium islemcilerin devreye girmesiyle birlikte 32 bit veri yolunu destekleyen PCI slotlar kullanilmaya baslandi. Zamanla Pentium II ve Pentium III’lerin çikmasiyla ISA slotlar yerini tamamen PCI slotlara birakmaktadir.
Anakartin üzerindeki kartlara veri akisi “bus” adi verilen elektronik yollar üzerinden yapilir. Buslar kendi içinden ikiye ayrilir. Bunlar System Bus ve I/O Buslardir. System Bus, islemci ile RAM arasindaki veri akisini saglar. I/O Bus ise çevre kartlarin iletisimini ve bunlarin islemci ile arasindaki iletisimi saglar. Anakart üzerindeki köprü chipsetler (bridge) I/O Bus’i System Bus’a baglar.
Anakartin Yapisi Sistem Bus Sistem Bus , islemci, RAM ve L2 önbellegi birbirine baglar.
Diger I/0 bus da bu yol üzerinden islemciye giris/çikis yapar. System Bus kullanilan islemciye göre farklilik gösterir. Islemcinin tipi system bus'in genisligini ve hizini belirler. Ne kadar hizli System bus kullanilirsa sistemin hizi ve diger parçalarla haberlesmesi de o derecede artar. Eski bilgisayarlarda kullanilan 486 islemciler 25 MHz bus hizina sahipken, Pentium islemciler bu hiz barajini 66 MHz'ye yükselttiler. Pentium II ve Pentium III islemciler bu hiz 100 MHz ve 133 MHz hizina kadar yükseltmistir. Ancak bu hizda çalisabilmek için 100 MHz destekli PC100 SDRAM ve 133 MHz RDRAM kullanilmasi gerekmektedir. (bkz sh. 39 )
I/O (Input/Output) Bus Bilgisayarin dis dünyayla ve kullanicisiyla iletisimini saglayan tüm giris/çikislar bu yolla yapilir. Klavye, fare, ses karti, ekran karti, modem, monitör, disk/disket sürücüleri bu yolla anakarta baglanirlar. Günümüz bilgisayarlarinda dört farkli I/0 bus çesidi yer alir. Bunlar ISA , PCI , USB ve AGP 'dir. ISA bus en eskisi ve en yavasidir. 16 bit iletisim kullanan kartlar tarafindan kullanilir. Bu kartlar ethernet kartlari, ses kartlari ve faks-modemlerdir (PCI olan ses karti, ethernet karti ve modemler de vardir). Bu veriyolu eskiden kullanilan 386 ve 486 islemcili anakartlarda da yer alir. PCI bus, daha hizli olan güçlü bir veri aktarim yoludur. 64 bit veri aktarimi yapar. Ekran kartlari, ses kartlari, modemler, ethernet kartlari, SCSI kontrol kartlari ve baska bir çok kart bu yolu kullanir.
USB bus Universal ****** Bus'in kisaltilmis halidir. En yeni veri aktarim yoludur. Günümüzde bu bus yolunu kullanan kart ve parçalar yeni yeni yayginlasmaktadir. Web kameralari, Infra Red port'lar, tarayicilar ve yeni üretilen bazi ekipmanlar bu yolla baglanirlar.
AGP, Accelerated Graphics Port'un kisaltilmis halidir. Sadece yeni gelistirilen ekran kartlarini sisteme baglamak için kullanilir. (bkz. sh. 10 )
Günümüzdeki yaygin bilgisayarlar 66 MHz bus hizinda çalisirlar. Bu yüksek hiz anakart üzerinde bir çesit elektronik gürültüye ve bazi problemlere yol açar. Genisleme kartlarina ulasimda bu hiz yüksek ve hizlidir. En yeni ve en hizli genisleme kartlari 40 MHz hizinda çalisabilir. Bu yüzden anakartin üzerindeki System bus, hizi çevre kartlarla problemsiz iletisim için yeniden düzenlenmek zorundadir.
I/0 bus yollari fiziksel olarak elektronik devre üzerinde yer alan çizgiler araciligiyla iletisim kurar. Data track adi verilen çizgiler bir seferde bir bit iletirler. Address Track'leri verinin nereye gönderilecegini belirler. Bus yollari araciligiyla veri gönderimi yapilirken adres belirtilmesi gerekir. Veri akisinda önce adres çizgilerinden adres, daha sonra da data çizgilerinden veri gönderilir. Bus hizini ve genisligini data çizgilerinin sayisi belirler. ISA bus veriyolunda 16 adet data çizgisi vardir. Günümüz PC'leri birim zamanda 32 bit gönderimi yapmak üzere tasarlanmislardir. ISA bus birim zamanda 16 bit gönderebildigi için anakartin beklemesi gereken bir süre olusturmaktadir. Anakart 32 bitlik bilgiyi ISA bus'dan iki seferde alabilmektedir. Bu arada geçen sürede ISA bus “Wait State” (bekle) durumunu anakarta bildirir. Bu islemciye “Bekle, kalanini birazdan gönderecegim” demektir. Yavas bir ISA kart sistemin tüm hizini bu yolla oldukça düsürebilir.
| |
| | | |mekann| ***(ÖZEL ÜYE)***
Mesaj Sayısı : 122 Nerden : %okuldan% (ENERJİ) : (REPP) : (PAYLAŞIM) : (TAKIMI) : (ADIM) : _DOLDUR_ (S.ADIM) : _DOLDUR_ (YAŞIM) : _DOLDUR_ (NERELİ) : _DOLDUR_ (KANKA\'LIK) : (SİTE GÜCÜ) : Rep Puanım : 100 Kayıt tarihi : 10/09/08
mEkAnN mEkAnN: 12
| Konu: Geri: İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! C.tesi Eyl. 13, 2008 5:05 pm | |
| Ses Kartı (Sound Card)
Ses Kartları
Üretilen ilk bilgisayarlarda hedeflenen gaye istenilen bilgiye ulaşmaktı. Bilgisayarın vereceği ufak tefek sesli ikazlar için küçük bir hoparlör yeterliydi. Zamanla bilgisayarın yapabileceği kabiliyetler keşfedildikçe ortaya müzik çalabileceği, oyun oynanabileceği çıktı. Fakat mevcut hoparlör ile kaliteli ses almak mümkün değildi. Böylece ortaya daha kaliteli ses almaya yarayan ses kartları çıktı.
Ses kartlarının kullanılmasındaki amaç sesleri kaydetmek ve daha sonra çalmaktır. Ses kartları ile birlikte video – grafik uygulamalarının gelişmesi ile multimedya ortaya çıktı ve bir bilgisayar için vazgeçilmez bir kavram halini aldı.
Ses kartları sesi kullanmak için analog biçimdeki sesi dijital biçime çevirir. Bu işlem için bir ADC (Analog to Digital Convertor –Analog Dijital Çevirici) kullanılır. Bu işlem yapılırken örnekleme (sapling) metodu kullanılır.
Örnekleme hızı ses örneğinin kalitesini belirler. Bu değer bir ses örneğinde saniyede kaç analog değerin sayısallaştırıldığını gösterir. Bir saniye içerisinde kaç tane örneğe ihtiyacımız olduğu Nyquist teorisiyle bulunur. Bunun için “N=2 x sinyal bant genişliği” formülü kullanılır.
Bir örnek çalındığında üretilen en yüksek frekans kullanılan örnekleme frekansının yarısıdır. Meselâ 12 KHz’e kadar sesleri üretebilmek için kullanılması gereken en düşük frekans 24 KHz’dir. Verilen bir örneğin kalitesini belirleyen bir başka faktör de örnekleme derinliğidir. Bu değer analog işaretin kodlanması için kodlayıcının kullandığı bit sayısını belirtir.
Bir örnek için gerekli veri miktarı örnekleme hızı ve derinliği arttıkça artar. Böylece bir dakikalık bir konuşmayı çalmak için gerçekçi bir örnekleme frekansı olan 11,025 KHz ve 8 bitle örneklersek 11025 x 60 byte yer tutar. Daha yüksek kaliteli ses almak için müzik CD’lerinde olduğu gibi 16 bit ve 44 KHz. örnekleme kullanılır. Tabi bu durumda 4 dakikalık bir şarkının kapladığı alan 21 MB gibi bir alan kaplar. Ayrıca stereo özelliği de kullanılırsa bu alan iki katına yanı 42 MB a kadar çıkar. Günümüzde bu alanı daraltmak için MP3 gibi çeşitli sıkıştırma yöntemleri kullanılmaktadır.
Gelişen ses kartı teknolojisi ile günümüzde çok gerçekçi sesler almak mümkündür. Meselâ Creative Sound Blaster Live ses kartı ile mükemmel sesler alınabilmektedir. Bu ses kartı kullandığı özel hoparlörler aracılığıyla surround ses verebilmektedir. | |
| | | |mekann| ***(ÖZEL ÜYE)***
Mesaj Sayısı : 122 Nerden : %okuldan% (ENERJİ) : (REPP) : (PAYLAŞIM) : (TAKIMI) : (ADIM) : _DOLDUR_ (S.ADIM) : _DOLDUR_ (YAŞIM) : _DOLDUR_ (NERELİ) : _DOLDUR_ (KANKA\'LIK) : (SİTE GÜCÜ) : Rep Puanım : 100 Kayıt tarihi : 10/09/08
mEkAnN mEkAnN: 12
| Konu: Geri: İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! C.tesi Eyl. 13, 2008 5:05 pm | |
| Monitör (Ekran)
Monitörler
Monitörler bilgisayar ile kullanıcı arasındaki görüntülü iletişimi sağlayan çıkış aygıtlarıdır.
CRT Monitörler Bir monitörün en önemli parçası çeşitli elektronik devrelerle birlikte CRT (Chatode Ray Tube – Katot Işınlı Tüp) denilen havası boşaltılmış ve ön yüzeyi binlerce fosfor noktacığından (dot) oluşan koni şeklindeki tüptür.
Bu tüpün geniş tarafı dikdörtgen şeklindedir. Diğer dar tarafında ise elektron tabancası bulunur.
Tabanca içerisindeki katot levhaları tel ızgaralar ile ısıtılır ve tüp içerisinde serbestçe dolaşan elektron bulutu oluşturulur. Negatif kutuplandırılan katotlar ile pozitif kutuplandırılan ekranın dış yüzeyi arasında büyük bir gerilim farkı oluşur. Bu durumda katotlarda oluşan elektronlar dış yüzeye doğru fırlar.
Sabit olarak yerleştirilen odaklama elemanları bu elektronları bir araya getirerek bir ışın halinde ekran orta yüzeyinde odaklar. Bu ışını ekranın istenilen taraflarına yönlendirmek için elektron tabancasının etrafında yatay ve dikey saptırma bobinleri bulunur. İşte bu ışının ön yüzeyde gezdirilmesi suretiyle ortaya görüntüler çıkar.
Ekran kartından sinyal geldiği müddetçe bu ışın monitörün sol üst köşesinden başlayarak fosfor ile kaplı ön yüzeyi tarar. Burada fosfor kullanılmasının sebebi son nokta taranıncaya kadar resmi ekranda tutmak içindir.
Elektron demetinin ekranı saniyede kaç defa taradığı ekran kartı tarafından belirlenir. Bu değer saniyede 50 ile 120 arasında değişir. Bu değerler “tazeleme” frekansı olarak isimlendirilir. Değerin yüksek olması görüntü kalitesini ciddi ölçüde artıracaktır. Değer düşük olursa monitörde gözü yoran kıpraşımlar daha da fazla olacaktır.
Renkli monitörlerde renklerin oluşması için üç temel renk (kırmızı-yeşil-mavi) kullanılır. Her renk için elektron tabancası içerisinde bir ışın demeti oluşturan eleman vardır. Ayrıca ekran yüzeyi de üç ayrı renkten oluşan fosfor tabakasından oluşur. Bu tabakalar delikli bir maskenin arasından aydınlatılır. Hassas bir şekilde ayarlanan bu deliklerde her renge ait ışın demeti sadece o renge çarpar.
Monitördeki her nokta üç ayrı renkteki fosfor damlacığından oluşur. Bu üç fosfor damlacığı da bir araya gelerek “pixel” leri oluşturur. Birbirine en yakın aynı renkteki iki noktanın merkezleri arasındaki uzaklığa “dot pitch” denir. Nokta aralığı anlamına gelen bu ifadenin bu günkü değerleri 0.24 mm ile 0.28 mm arasında değişmektedir. Bu değerlerin küçük olması görüntü kalitesinin artması anlamına gelir.
Monitorler
LCD Monitörler LCD (Liquid Cyristal Diode) monitörlerde görüntü sıvı kristal diyotlar yardımıyla sağlanmaktadır. Bu diyotlara gerilim uygulandığında, içlerindeki moleküllerin polarizasyonu değişmekte ve beraberinde de diyodun geçirgenliği değişmektedir. Bu duruma dijital saatlerde de rastlamaktayız. Normalde şeffaf olan bu diyotlara gerilim uygulandığında geçirgenliklerini kaybederler ve siyaha dönerler. Renkli LCD monitörlerde ise çok ufak ve birden fazla diyot kamanı kullanılarak görüntü alınmaktadır.
LCD monitörler DSTN ve TFT olmak üzere ikiye ayrılmaktadır. Ucuz olan ve “passive matrix” teknolojisini kullanan DSTN (Dual-Scan Twisted Nematic)’ler çözünürlükleri ve görüş açıları TFT’lerden düşük olan monitörlerdir. Bu monitörler genelde dizüstü bilgisayarlarda kullanılmaktadır. TFT (Thin Film Transistor)’ler ise “active matrix” adı verilen ve görüntüyü daha parlak ve keskin gösteren bir teknoloji kullanırlar. TFT’lerde her piksel bir ya da dört transistör tarafından kontrol edilir ve bu sayede flat panel ekranlar arasında en iyi çözünürlüğü sunarlar.
Interlaced ve Non-Interlaced Monitör
Interlaced monitörlerde önce tek satırların daha sonra da cift satırların tazelendiği bir tarama şekli kullanılmaktadır. Bu yöntem ekran çözünürlüğünü artırmak için uygun bir yöntemdir, fakat ekranda titreşime sebep olunmaktadır.
Non-interlaced monitörlerde ekranın üstünden altına doğru bir döngü ile her satır tazelenir. Bu olay titreşimi azaltmaktadır ve günümüzde bu tip monitörler kullanılmaktadır.
256, Yüksek ve Gerçek Renkler Monitörde görüntülenen renk sayısı ekran kartının hafızası ile ilgilidir. 256, yüksek ve gerçek renk terimleri renk bilgisini depolamak için kullanılan bit sayısını ifade eder. Bit sayısının fazlalığı, renk sayısının ve aynı zamanda video RAM’in fazlalığı demektir.
256 renk 8 bit’i kullanır ve ekranda sadece 256 farklı renk görünür. Yüksek (high) renk 16 bit’i kullanır ve ekranda 65536 (64K) renk görüntülenir. Gerçek (true) renk 24 bit kullanır ve ekranda 16 milyon ren görüntülenir. 16 ve 24 bit arasındaki fark insan gözü tarafından algılanmaz.
Ekran kartı için gereken video RAM miktarı şu şekilde formüle edilebilir:
yatay çözünürlük x dikey çözünürlük x 1 pixel için gereken byte miktarı = ekran kartında bulunması gereken minimum ram miktarı (byte)
16 renkte: 1 pixel için 0,5 byte
256 renkte : 1 pixel için 1 byte
64K renkte: 1 pixel için 2 byte
16,7 milyon renkte: 1 pixel için 3 byte gerekir.
Mesela: 16,7 milyon renk ve 1024 x 768 çözünürlük için;
1024 x 768 x 3 = 2,359,296 byte = 2,4 MB (yaklaşık) video RAM gerekmektedir. Dolayısıyla piyasada bu sınırın üzerinde 4 MB ekran kartı bulunduğundan en azından bunun kullanılması gerekmektedir. | |
| | | |mekann| ***(ÖZEL ÜYE)***
Mesaj Sayısı : 122 Nerden : %okuldan% (ENERJİ) : (REPP) : (PAYLAŞIM) : (TAKIMI) : (ADIM) : _DOLDUR_ (S.ADIM) : _DOLDUR_ (YAŞIM) : _DOLDUR_ (NERELİ) : _DOLDUR_ (KANKA\'LIK) : (SİTE GÜCÜ) : Rep Puanım : 100 Kayıt tarihi : 10/09/08
mEkAnN mEkAnN: 12
| Konu: Geri: İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! C.tesi Eyl. 13, 2008 5:06 pm | |
| Hardisk (Sabitdisk)
Hard Diskler
HDD (Hard Disk Driver), Türkçe ifadesiyle Sabit Disk, programların kaydedildiği, işletim sisteminin saklandığı, kalıcı olması istenen bilgilerin depolandığı bir aygıttır.
Genellikle kalıcı bilgilerin depolandığı sabit diskler, kimi durumlarda, özellikle RAM yetersiz kaldığı zamanlarda geçici hafıza görevi de yapmaktadır. Fakat yarı mekanik olan bu cihazların hızları elektronik hafıza olan RAM’lere göre çok daha düşük olduğundan bu istenmeyen bir durumdur.
Sabit diskler gelişmiş bir disket gibi düşünülebilir. Fakat disketlerden çok daha yüksek kapasiteye sahiptirler. Bir disketin 1.44 MB, bir sabit diskin de 10 GB veya 19 GB olduğunu düşünürsek aradaki farkın çok yüksek olduğunu görebiliriz. Ayrıca sabit disklere erişim hızı diskete göre çok daha fazladır.
Sabit diskler, havası alınmış ve sürtünmenin en aza indirgendiği bir metal kutu içerisine yerleştirilmiş, evlerde kullandığımız teyplerden bildiğimiz ses kasetlerinde kullanılan, manyetik alandan etkilenen disklerden meydana gelmiştir. Her disk yüzeyine ait bir okuma-yazma kafası mevcuttur. Bu kafalar elektrik enerjisini 1 ve 0’lardan oluşan manyetik enerjiye çevirirler. Kafalar disklere değmezler, fakat birkaç mikrometre ile ifade edilebilecek kadar yakındırlar.
Bu disklerin yüzeyleri manyetik alandan etkilenen madde ile kaplanırlar. Yüzeyler formatlama işlemi sırasında verilerin rahatlıkla bulunabilmesi amacıyla adreslenirler. İz (track), silindir (cylinder) ve sektör (sector) gibi kısımlara ayrılan sabit disklere kayıt işlemi en dış bölümden başlayarak yapılmaktadır.
Veriler disk üzerinde byte grupları halinde saklanır. 512 adet byte’in bir araya gelmesiyle sektör oluşur. Sektör, disk üzerinde veri yazabileceğimiz ve okuyabileceğimiz en küçük birimdir. Yan yana dizilen sektörler izleri oluşturur. İzler de üst üste gelecek şekilde gruplandırılır ve böylece silindirler oluşur.
Sabit disklerde ayrıca plakaları döndüren mekanik bir sistem mevcuttur. Bu plakalar dakikada 5200 veya daha yüksek bir hızla dönmektedirler. Eğer enerji tasarrufu konumu açılmamışsa bu plakalar bilgisayar çalıştığı müddetçe bu devirde dönerler. Bu plakalar arasında kafalar vardır ve bu kafaların disklere teması bilgi kaybına veya plakaların çizilerek fiziksel bozukluğuna sebep olurlar. Bu sebepten, özellikle bilgisayar çalışırken kasayı sallamamalı ve kasanın sağlam ve sallanmaya müsaade etmeyen bir zeminde bulunmasına özen gösterilmelidir. Aksi halde sallanan kafalar disklere temas edebilir. Ayrıca elektrik kesildiğinde kafalar otomatik olarak disklerin arasından çıkarak park konumuna gelirler. Bu şekilde bilgisayar çalışmazken sallanma durumunda bir bozulma engellenmiş olur. Çok eskilerden kalan 40 MB’ın altındaki sabit disklerde bu otomatik olarak yapılmazdı. Bunun için ayrıca bir komut yazmak gerekirdi.
Sabit diskler çok hassastırlar ve belki de bir bilgisayarın bozulma ihtimali en yüksek olan parçasıdır. Ayrıca sabit diskler bozulduğu takdirde bir kişiye ya da firmaya en büyük zararı verebilecek aygıtlardır. Bir şirketin milyarlarca liralık hesabının sabit diskte bulunduğunu ve sabit diskin bozulduğunu ve içindeki verilere ulaşılamadığını düşünürseniz sabit diskin önemini görebilirsiniz. Bu tür üzücü sonuçların olmaması için sürekli yedekleme yapmak her zaman tavsiye edilir.
Bilgisayar için geçerli olan en önemli kural tüm sistemin en yavaş aygıtın hızında çalışacağıdır. Tüm sistem arasında en yavaş olanı da hala yarı mekanik olması nedeniyle sabit disktir. Bağlantı noktası baz alınırsa masaüstü bilgisayarlar için iki çeşit sabit diskten bahsetmek mümkündür. Bunlar IDE ve SCSI arabirimini kullanan sabit disklerdir. SCSI arabirimini kullanan sabit diskler IDE olanlardan daha hızlıdırlar. Fakat burada asıl hızlı olan sabit disklerin kendilerinden ziyade kullandıkları arabirimdir. SCSI arabiriminin işlemci ile iletişimi daha hızlıdır. Dolayısıyla bu arabirime bağlanan cihazlar daha hızlı çalışmaktadır.
Sabit disklerin performansı ölçülürken erişim süresine ve veri transfer hızına bakılır.
Erişim süresi, verinin disk üzerindeki yerinin ne kadar zamanda bulunabildiğini ifade eder. Veri transfer hızı ise bulunan verinin ne kadar zamanda okunabildiğini ifade eder.
Bir sektörün aranması iki aşamadan oluşur. Öncelikle sürücü kafası uygun izin üzerine getirilir. Daha sonra diskin dönmesi ve bunun sonucunda sektörün sürücü kafasının altına gelmesi beklenir. Kafanın doğru yere götürülmesi, sektörün doğru noktaya gelmesinden daha çok zaman almaktadır.
Günümüzde kullanılmakta olan çeşitli arabirimler mevcuttur. Bir sabit disk almaya karar verdiğimiz zaman hangi arabirimi kullandığımızı bilmeli ve ona uygun bir sabit disk almalıyız.
IDE (Intelligent Drive Electronic) Genellikle anakart üzerinde bulunan bu arabirim 2 seri, 1 paralel port, bir disket sürücü ve bir de IDE arabirimi ihtiva eder.
EIDE (Enhanced IDE) Adından da anlaşılacağı üzere IDE’nin gelişmiş halidir. IDE’deki 528 MB kapasite sınırı EIDE ile ortadan kalkmış ve dört adet IDE aygıt takabilme imkanı vermiştir. Günümüz anakartlarının hepsinde mevcut olan bu arabirim ile veri transfer hızı daha da artmıştır.
Ultra DMA/33 Teknoloji geliştikçe ve arttıkça yeni bir standarda ihtiyaç duyuldu. Bu standard iki sabit disk beraber seri şekilde kullanıldığında bile performans seviyesi kabul edilebilir olmalıydı. Mevcut ortalama 10MB/s veri aktarım hızına sahip haddiskler bu işlem için uygun değildi. İşte bu noktada Quantum Ultra-ATA/33 (UDMA/33) standardını geliştirdi. Diğer sabit disklerdeki saat sinyalinin yükselen kenarında oluşan veri aktarımı burada hem yükselen ve inen kenarda tetiklenerek 33MB/s veri aktarım hızı elde edildi.
Ultra DMA/66 Sabit disklerdeki dönüş hızı ve kapasite arttıkça yeni arayışlara girildi ve UDMA/33’e benzer şekilde UDMA/66 geliştirildi. Buna göre IDE aktarım hızı 30ns’ye indirilerek ikiye katlandı. Fakat bu işlem beraberinde aktarım yolunda gürültü promlemini ortaya çıkardı. Bu problemi aşmak için 40 pinli IDE kablosuna topraklama görevi üstlenen 40 pin daha kondu. Bu şekilde yeni bir 80 iletkenli 40 pinli UDMA/66 kalosu ortaya çıkmış oldu.
UDMA 66 harddisk sürücüleri geriye dönük olarak eski IDE sürücüleriyle ve kablosu ile de kullanılmaktadır. Ancak bu kablo yada veriyolu desteği olmadan UDMA 66 sürücü performansı ve avantajlarından yararlanılamaz.
Kablodaki yeni bir özellik ise harddisklerdeki Master/Slave jumper görevini kendi üzerine almasıdır. Harddisk'in master yada slave olması, üzerindeki Cable Select (CS) jumperı kullanıldığında harddiskin kablo üzerindeki yerine göre belirlenmektedir.
UDMA 66 sürücüleri sadece band genişliğini arttırmakla kalmayıp CRC (Cylic Redundancy Check) veri kontrolü sağlamaktadır. Veri aktarımı sırasında herhangi bir hata ile karşılaşıldığında aynı veri daha yavaş modda tekrar gönderilir ve böylece veri güvenilirliği sağlanmış olur.
İlk olarak i810 cihipset ile anakartlar bu desteği sağlamaktadırlar. Aslında BX chipsetine sahip anakartlar da bu arabirim için ek chipler kullanıldığında Ultra ATA66 desteğini vermektedir. Ama bu destek i810 chipset ile başlamıştır.
SCSI (Small Computer System Interface) Aynı anda 7 aygıtı (sabit disk ve CD-ROM gibi) destekleyebilen bu arabirim diğer arabirimlerden daha hızlı ve daha güvenlidir. Bu arabirimle harici aygıtları yüksek hızda bağlamak mümkündür. Zamanla Fast SCSI , Wide SCSI ve Ultra Wide SCSI gibi çeşitli yapıda üretilen bu arabirimlerle saniyede 40 MB üzerinde veri transferi yapmak mümkündür.
Özellikle server sistemlerde tercih edilen bu arabirimin konfigürasyonu biraz karışıktır. Takılan her aygıta 0-7 arası bir ID numarası vermek sonlandırma işlemin yapmak gerekir. Takılan aygıtların ID numaraları birbirinden farklı olmalıdır. Kullanılan bir numara diğer aygıta verilemez. 7 numaralı ID genellikle SCSI adaptörüne ayrılır.
Aygıt üzerindeki kimliklendirmeler Jumper ve DIP devreleri ile ayarlanır. Aygıt üzerinde üç adet jumper bulunur ve yapılan kimliklendirme genellikle ikilik sayma sistemine göre yapılır. Yani jumperlerin tümü boş olduğunda 0, tümü dolu olduğunda 7, birinci ve ikinci dolu olduğunda 3, üçüncü dolu olduğunda 4 numaralı ID seçilmiş olur.
Farklı SCSI arabirimleri için farklı kablolar kullanmak gerekmektedir. Fakat bu arabirimleri birbirine çeviren çeşitli adaptörler de mevcuttur. Meselâ 68 pinden 50 pine çeviren adaptör gibi.
Bir çok SCSI kontrol kartı kullanıcıya 3 bağlantı türü sunmaktadır. Bunlardan ikisi dahili ve harici 68 pinlik bağlantı, diğeri de dahili 50 pinlik bağlantıdır. Bu üç aygıta birden cihaz bağlanmaz. Eğer sistemimize harici bir cihaz takacaksak içteki 50 pinlik bağlantı boş kalmalıdır.
SCSI arabirimlerde de kablo uzunluğu önem taşımaktadır. Kablo ne kadar uzun olursa taşıma hataları ve kesintilerin oluşma ihtimali o kadar artar. Burada kablo uzunluğundan kastedilen, kullanılan dahili ve harici kabloların tamamıdır. Aşağıdaki tabloda azami uzunluklar, SCSI türlerine göre transfer hızları ve kullanılacak kabloların pin sayıları verilmiştir. | |
| | | SERKAN11 {***KRAL***}
Mesaj Sayısı : 1081 Yaş : 30 Nerden : KOCAELİ İş/Hobiler : -MeKaNcI- Lakap : aDS_Coo (ENERJİ) : (REPP) : (PAYLAŞIM) : (TAKIMI) : (ADIM) : !^^SeRkAn^^! (S.ADIM) : boşver sALLa (YAŞIM) : 13_14 gircem (NERELİ) : ***TOkat*** (KANKA\'LIK) : (SİTE GÜCÜ) : (AVATAR) : Ruh Hali : Hayvanım : (Seviye) : Rep Puanım : 4682590022212 Ödülü : Kayıt tarihi : 08/09/08
mEkAnN mEkAnN: -MeKaNcI-
| Konu: Geri: İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! C.tesi Eyl. 13, 2008 5:44 pm | |
| kanka çok güzel teşekürler | |
| | | | İşlemci , Anakart , Ram , Ses Kartı , Harddisk , Monitor Hakkında BiLgiLer! | |
|
Similar topics | |
|
| Bu forumun müsaadesi var: | Bu forumdaki mesajlara cevap veremezsiniz
| |
| |
| |
|